Reference

Contents

Index

RationalVectorFitting.cplxpairMethod
cplxpair(x)

To be used to sort an array by real values, then complex conjugate pairs. The more positive reals will be first, then the pairs with smaller imaginary part.

Example

real_values = [-1, -3, -2]
complex_values = [-1 + 1im, -2 - 2im, -1 + 2im]
sorted_values = sort!([complex_values; conj(complex_values); real_values], by = cplxpair)

# output

9-element Vector{Complex{Int64}}:
 -1 + 0im
 -2 + 0im
 -3 + 0im
 -1 - 1im
 -1 + 1im
 -1 - 2im
 -1 + 2im
 -2 - 2im
 -2 + 2im
source
RationalVectorFitting.rationalMethod
rational(s, poles, residues, d, h) -> `f(s)`

Rational transfer function with complex frequencies s, a set of poles a_n, residues r_n and real constants d and h.

\[\sum_{n=1}^N \frac{r_n}{s - a_n} + d + s h\]

source
RationalVectorFitting.vector_fittingFunction
vector_fitting(
    s,
    f,
    init_poles,
    weight = 1;
    relaxed = true,
    force_stable = true,
    maxiter = 5,
    tol = 1e-12,
) -> poles, residues, d, h, fitted, error_norm

Vector Fitting of the array f with complex frequency s using a set of initial poles init_poles.

f can be a matrix of dimensions (Ns, Nc) and the fitting will be over its columns using a set of common poles.

relaxed controls the nontriviality constraint. relaxed=true usually converges faster, but can be less stable for non-smooth functions.

force_stable controls if unstable poles should be reflected to the semi-left complex plane, that is, forced to have negative real part.

maxiter is the maximum of iterations that will be done to try to achieve a convergence with desired error_norm tolerance tol.

See also recommended_init_poles, rational, pole_identification, residue_identification.

source